Relative contribution of aortic and carotid baroreflexes to heart rate control in man during steady state and dynamic increases in arterial pressure.
نویسندگان
چکیده
We studied the contribution of carotid vs. extracarotid baroreceptors in control of heart rate in normal humans. We measured heart interval (HI) and arterial pressure during steady-state infusion of phenylephrine (PE). PE increased mean arterial pressure (MAP) by 13 +/- 2 mmHg (mean +/- SEM; n = 10) and thus stimulated both carotid and aortic baroreceptors. Neck pressure (NP) was applied during PE infusion to counter the increase in transmural carotid sinus pressure, thus leaving only aortic baroreceptors stimulated by the increase in arterial pressure. PE infusion alone prolonged HI by 230 +/- 24 ms (P less than 0.05). Application of NP attenuated the HI response to 65 +/- 22 ms above control (P less than 0.05 vs. PE alone). During these steady-state increases in arterial pressure, elimination of the carotid baroreflex contribution reduced the HI prolongation by 41-70% in five subjects and by greater than 93% in five subjects. We also measured the HI response to dynamic ramp elevation of systolic arterial pressure (SAP) using bolus administrations of PE. Baroreflex control was calculated from the slope of the regression correlating SAP to succeeding HI for PE alone (carotid and aortic baroreceptor activation) and for PE plus superimposed dynamic NP at levels equal to the increases in SAP (aortic baroreceptor activation). During PE alone, the baroreflex slope was 20.2 +/- 2.9 ms/mmHg (n = 10). During PE plus NP, the baroreflex slope was reduced by 30% to 14.1 +/- 2.8 ms/mmHg (P less than 0.02 vs. during PE alone). Thus, during dynamic increases in arterial pressure, eliminating the carotid baroreflex contribution reduced the HI response by 30%. These studies indicate that extracarotid (presumably aortic) and carotid baroreflexes both participate in control of heart rate in humans. Extracarotid (aortic) baroreflexes appear to have the greater role in control of heart rate during dynamic increases in arterial pressure.
منابع مشابه
Importance of aortic baroreflex in regulation of sympathetic responses during hypotension. Evidence from direct sympathetic nerve recordings in humans.
Arterial baroreceptors in the carotid sinus and aortic arch regions reflexly regulate heart rate and peripheral vascular responses during changes in arterial pressure. The relative influence of these two arterial baroreflex pathways on the control of these autonomic responses is debatable. Recent studies in our laboratory demonstrate that the aortic baroreflex produces substantial and sustained...
متن کاملArterial baroreflex control of sympathetic nerve activity during elevation of blood pressure in normal man: dominance of aortic baroreflexes.
Arterial baroreceptors in the carotid sinus (CBR) and aortic arch (ABR) regions exert important control over heart rate and peripheral vascular responses to changes in arterial pressure. The relative roles of these two baroreflex pathways on control of sympathetic nerve activity during sustained elevation of arterial pressure in man is unknown. We therefore studied the relative contributions of...
متن کاملPATHOPHYSIOLOGY AND NATURAL HISTORY HYPERTENSION Arterial baroreflex control of sympathetic nerve activity during elevation of blood pressure in normal man: dominance of aortic baroreflexes
Arterial baroreceptors in the carotid sinus (CBR) and aortic arch (ABR) regions exert important control over heart rate and peripheral vascular responses to changes in arterial pressure. The relative roles of these two baroreflex pathways on control of sympathetic nerve activity during sustained elevation of arterial pressure in man is unknown. We therefore studied the relative contributions of...
متن کاملSummation of dynamic transfer characteristics of left and right carotid sinus baroreflexes in rabbits.
Although interactions among parallel negative-feedback baroreflex systems have been extensively investigated with respect to their steady-state responses, the dynamic interactions remain unknown. In anesthetized, vagotomized, and aortic-denervated rabbits, we perturbed isolated intracarotid sinus pressure (CSP) unilaterally or bilaterally around the physiological operating pressure according to...
متن کاملRole of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat
Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 76 6 شماره
صفحات -
تاریخ انتشار 1985